NYCCT CET 4925 Internet of Things Instructor: Dr. Li

Particle Photon Sends Data and Receives Commands from IBM Cloud via MQTT
—Dr. Li’s C++ Example Code

Dr. Xiaohai Li (xhli@citytech.cuny.edu)

Robotics & Intelligent System Research Lab
Department of Computer Engineering Technology
New York City College of Technology/CUNY

Spring 2018

The example code here is written for Particle Photon to send data (for example, from sensors) to IBM
Cloud/Watson IoT Platform, receive commands from IBM Cloud, parse received commands, and take
certain actions according to the commands. On the cloud side, a Node-RED application is running to receive
sensor data, analyze data, and generate certain commands according the data. You can create your own
Node-RED application allowing users to initiate a command (for example, a text/Twitter message).

The MQTT library used in this code is accessible from online Particle Build, which was written by Hirotaka
Niisato [4]. Due to possible update of the MQTT library, the code here might need some modifications.
Search and read MQTT.h and MQTT.cpp on Particle Build or Niisato’s GitHub repository[4] for complete
detail of the latest MQTT library.

Thoroughly read the following code, and revise it for your needs. Note: To help you understand the code,
some of the important comments are highlighted.

/*This code is to send an integer dummydata (changing from 0@ to 100) to IBM Watson IoT
Platform, subscribe commands from a Node-RED app running on IBM Cloud, and blinks
corresponding indicator LEDs according to the received commands.

Note: the Node-RED app on IBM Cloud sends command “turnlow” back to Photon if the app
receives a dummydata in 0~32, sends command “turnmid” if receiving a daummydata in
33~66, “turnhigh” if receiving a dummydata in 67~100.

*/

/* Author: Xiaohai Li

* License: GPL v2.0

* 05/05/2018
*/

// This #include statement was automatically added by the Particle IDE.
#include <MQTT.h> //search and include the mqgtt library via Particle online IDE

©CoO~NO U~ WNRE

// This #include statement was automatically added by the Particle IDE.
10| #include <RdJson.h>

11
12 | #define HOST_PORT 1883 //port# used by host (IBM Watson IoT Platform): 1883 (default)
13 //change part# to 443 for secure connection
14
15| #define MQTT_QoS @ //MQTT QoS = 0: message will be delivered zero or once (default)
16 //MQTT QoS = 1: message will be delivered at least once
17 //MQTT QoS = 2: message will be delivered exactly once
18
19| //Use your device information to fill in the following code in 1line20~24
char *MQTT_HOST = "your_organizationID_here.messaging.internetofthings.ibmcloud.com";
char *MQTT_CLIENT = "d:your_organizationID_here:your_Device_ Type_here:your_DeviceID_here";

//an example of MQTT_CLIENT is "d:myorgID:photons:photon_al";
char *MQTT_USERNAME = "use-token-auth";
char *MQTT_PASSWORD = "your_token_here";

26|// Set MQTT event topic for the data that will be published to Watson IoT Platform.
27|// iot-2 --> The protocol

28|// evt --> Specifies the message type, use "cmd" for applications

B8 | // [EESEEVEHE- -> Name of event //it is also EventID. Important! Needed by cloud!

30|// fmt/json --> Message will be send in JSON format //Watson Platform uses JSON format as default
B | char *EVENT_TOPIC = "iot-2/ENil/BESEeNERE fmt/json"; // Segment can be customized by you

Copyright Reserved H

mailto:xhli@citytech.cuny.edu

NYCCT CET 4925 Internet of Things Instructor: Dr. Li

32
33| //Specify topic of the commands that Photon will subscribe (which is sent from IBM Cloud).
I //Set CommandID as “testcommand”, which should match CommandType setting in Node-RED app

//char *COMMAND_TOPIC = "iot-2/| /| /fmt/| " //use json formatted commands
char *COMMAND_TOPIC = "iot-2/ /| /fmt/| ", //use string formatted commands

38 |MQTT client(MQTT_HOST, HOST_PORT, callback); //Create a MQTT client with callback function

40 | char payload[80]; //MQTT data message's payload. A string in JASON format.

41 // 80Bytes used here. Change the size according to your data.
42

43| int dummydata = 0;

44

45|int LedIndicator_Publish D7; //set LED D7 as publishing indicator
46 |int LedIndicator_CommLow D6; //set LED connected on D6 as indicator for command “turnlow”
47 |int LedIndicator_CommMid D5; //set LED connected on D6 as indicator for command “turnmid”

48| int LedIndicator_CommHigh = D4; //set LED connected on D6 as indicator for command “turnhigh”

50 |void BlinkLed(int LedPin, int BlinkTimes, int BlinkPeriod); //A func to blink a LED

52 |void setup() {

53 pinMode(LedIndicator_Publish, OUTPUT);
54 pinMode(LedIndicator_CommLow, OUTPUT);
55 pinMode(LedIndicator_CommMid, OUTPUT);
56 pinMode(LedIndicator_CommHigh, OUTPUT);

58 BlinkLed(LedIndicator_CommLow, 1, 300);
59 BlinkLed(LedIndicator_CommMid, 1, 300);
60 BlinkLed(LedIndicator_CommHigh, 1, 300);

61

62 RGB.control(true);

63

64 Serial.begin(9600); //Use serial monitor to debug the code.

65 //Read “Particle serial tutorial” for detailed how-to.
66 Serial.println("Connecting Photon to IBM Watson IoT Platform "),
67

68 while(!Serial.available()) {

69 Particle.process();

70| 3}

71

72 client.connect(MQTT_CLIENT, MQTT_USERNAME, MQTT_PASSWORD);//Connect Photon to Watson IoT Platform

74 if(client.isConnected()) { //Verify the connection

75 Serial.println("Now connected!");

76 client.subscribe (CONMENDEIOEEE) ; //subscribe commands with CommandType specified in line36
77 }

78|}

79

80 | void loop() {
81 dummydata ++;
82 if (dummydata > 100) dummydata = 0;

84 //Convert data into a JSON formatted object by 1ine86:
85 //JSON format example: {“property”: valuel, "property2”: value2,.}
86 sprintf(payload, "{ \"EHEPRCPERE\": \"%d\" }", dummydata);

88 //Publish the JSON formatted payload to IBM cloud under the pre-defined Event Topic in line31
B8| client.publish(ENVENIEIGBEE, const_cast<char*> (payload));

91 BlinkLed(LedIndicator_Publish, 1, 200); //blink the publishing LED once when a data is sent
93 client.loop();

95 Serial.print("Data being sent to Cloud: "); //Display the sent data on SerialMonitor
96 Serial.println(dummydata);

98 delay(5000); //delay 5sec: Set the period of publishing data to cloud
99|}

@8 void callback(char* topic, byte* payload, unsigned int length) {
102 RGB.color(255,10,255); //blink the RGB LED in pink color

103 delay(300);

104 RGB.color(0,0,0);

106 char p[length + 1];
107
108 memcpy(p, payload, length); //read in received command message payload
109 p[length] = NULL;

110

Copyright Reserved

[

NYCCT CET 4925 Internet of Things Instructor: Dr. Li

111 String message(p);
112
113 Serial.print("Received command from Cloud: "); //display received command on serial terminal
114 Serial.println(p);
115
116| //Linel18: to parse received json object to obtain commands. If the commands are in string
117| //format, no need of this.
@8 // string CmdStr = RdJson::getString("testcommand", "", p.c_str());
119| // Serial.printlnf("Received Command from cloud: %s", CmdStr.c_str());
120
//Linel122-138: Take diff actions according to received commands. Make changes for your needs.
if (!strcmp(p, "turnlow"))
BlinkLed(LedIndicator_CommLow, 1, 300);
else if (!strcmp(p, "turnmid"))
BlinkLed(LedIndicator_CommMid, 1, 300);
}
else if (!strcmp(p, "turnhigh"))
BlinkLed(LedIndicator_CommHigh, 1, 300);
}
else {
RGB.color(255,255,255); delay(1000); RGB.color(0,0,0); //Blink the RGB LED in white
BlinkLed(LedIndicator_CommLow, 1, 100);
BlinkLed(LedIndicator_CommMid, 1, 100);
BlinkLed(LedIndicator_CommHigh, 1, 100);
}
140 |}
141
142 |void BlinkLed(int LedPin, int BlinkTimes, int BlinkPeriod) //A func to blink a LED for BlinkTimes
143 {
144 for (int k=0; k<BlinkTimes; k++){
145 digitalWrite(LedPin, HIGH);
146 delay(BlinkPeriod);
digitalwrite(LedPin, LOW);
delay(BlinkPeriod);
}
}

Note: Refer to Particle Serial Tutorial to learn how to use Serial Monitor with Particle for testing and
debugging.

Link: https://community.particle.io/t/serial-tutorial/26946

or: https://github.com/rickkas7/serial tutorial

References

1. “MQTT connectivity for devices”, IBM Cloud Docs,
https://console.bluemix.net/docs/services/IoT/devices/mqtt.html#mqtt

2. “Getting started with Watson IoT Platform using Node-RED”, IBM developerWorks Recipes,
https://developer.ibm.com/recipes/tutorials/getting-started-with-watson-iot-platform-using-node-red/
3. https://console.bluemix.net/docs/services/IoT/platform authorization.html#connecting-applications
4. https://github.com/hirotakaster/MQTT

Copyright Reserved ﬁ

https://github.com/hirotakaster/MQTT
https://console.bluemix.net/docs/services/IoT/platform_authorization.html#connecting-applications
https://developer.ibm.com/recipes/tutorials/getting-started-with-watson-iot-platform-using-node-red/
https://console.bluemix.net/docs/services/IoT/devices/mqtt.html#mqtt
https://github.com/rickkas7/serial_tutorial
https://community.particle.io/t/serial-tutorial/26946

