
1

NYCCT CET 4925 Internet of Things Instructor: Dr. Li

Particle Photon Sends Data and Receives Commands from IBM Cloud via MQTT

– Dr. Li’s C++ Example Code

Dr. Xiaohai Li (xhli@citytech.cuny.edu)

Robotics & Intelligent System Research Lab
Department of Computer Engineering Technology

New York City College of Technology/CUNY

Spring 2018

The example code here is written for Particle Photon to send data (for example, from sensors) to IBM
Cloud/Watson IoT Platform, receive commands from IBM Cloud, parse received commands, and take
certain actions according to the commands. On the cloud side, a Node-RED application is running to receive
sensor data, analyze data, and generate certain commands according the data. You can create your own
Node-RED application allowing users to initiate a command (for example, a text/Twitter message).

The MQTT library used in this code is accessible from online Particle Build, which was written by Hirotaka
Niisato [4]. Due to possible update of the MQTT library, the code here might need some modifications.
Search and read MQTT.h and MQTT.cpp on Particle Build or Niisato’s GitHub repository[4] for complete
detail of the latest MQTT library.

Thoroughly read the following code, and revise it for your needs. Note: To help you understand the code,
some of the important comments are highlighted.

/*This code is to send an integer dummydata (changing from 0 to 100) to IBM Watson IoT
Platform, subscribe commands from a Node-RED app running on IBM Cloud, and blinks
corresponding indicator LEDs according to the received commands.

Note: the Node-RED app on IBM Cloud sends command “turnlow” back to Photon if the app
receives a dummydata in 0~32, sends command “turnmid” if receiving a daummydata in
33~66, “turnhigh” if receiving a dummydata in 67~100.
*/

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

/* Author: Xiaohai Li
 * License: GPL v2.0
 * 05/05/2018
 */

// This #include statement was automatically added by the Particle IDE.
#include <MQTT.h> //search and include the mqtt library via Particle online IDE

// This #include statement was automatically added by the Particle IDE.
#include <RdJson.h>

#define HOST_PORT 1883 //port# used by host (IBM Watson IoT Platform): 1883 (default)
 //change part# to 443 for secure connection

#define MQTT_QoS 0 //MQTT QoS = 0: message will be delivered zero or once (default)
//MQTT QoS = 1: message will be delivered at least once
//MQTT QoS = 2: message will be delivered exactly once

//Use your device information to fill in the following code in line20~24
char *MQTT_HOST = "your_organizationID_here.messaging.internetofthings.ibmcloud.com";
char *MQTT_CLIENT = "d:your_organizationID_here:your_Device_Type_here:your_DeviceID_here";
 //an example of MQTT_CLIENT is "d:myorgID:photons:photon_a1";
char *MQTT_USERNAME = "use-token-auth";
char *MQTT_PASSWORD = "your_token_here";

// Set MQTT event topic for the data that will be published to Watson IoT Platform.
// iot-2 --> The protocol
// evt --> Specifies the message type, use "cmd" for applications
// testevent--> Name of event //it is also EventID. Important! Needed by cloud!
// fmt/json --> Message will be send in JSON format //Watson Platform uses JSON format as default
char *EVENT_TOPIC = "iot-2/evt/testevent/fmt/json"; // Segment can be customized by you

Copyright Reserved

mailto:xhli@citytech.cuny.edu

2

NYCCT CET 4925 Internet of Things Instructor: Dr. Li

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

//Specify topic of the commands that Photon will subscribe (which is sent from IBM Cloud).
//Set CommandID as “testcommand”, which should match CommandType setting in Node-RED app
//char *COMMAND_TOPIC = "iot-2/cmd/testcommand/fmt/json" //use json formatted commands
char *COMMAND_TOPIC = "iot-2/cmd/testcommand/fmt/string"; //use string formatted commands

MQTT client(MQTT_HOST, HOST_PORT, callback); //Create a MQTT client with callback function

char payload[80]; //MQTT data message's payload. A string in JASON format.
 // 80Bytes used here. Change the size according to your data.

int dummydata = 0;

int LedIndicator_Publish = D7; //set LED D7 as publishing indicator
int LedIndicator_CommLow = D6; //set LED connected on D6 as indicator for command “turnlow”
int LedIndicator_CommMid = D5; //set LED connected on D6 as indicator for command “turnmid”
int LedIndicator_CommHigh = D4; //set LED connected on D6 as indicator for command “turnhigh”

void BlinkLed(int LedPin, int BlinkTimes, int BlinkPeriod); //A func to blink a LED

void setup() {
 pinMode(LedIndicator_Publish, OUTPUT);
 pinMode(LedIndicator_CommLow, OUTPUT);
 pinMode(LedIndicator_CommMid, OUTPUT);
 pinMode(LedIndicator_CommHigh, OUTPUT);

 BlinkLed(LedIndicator_CommLow, 1, 300);
 BlinkLed(LedIndicator_CommMid, 1, 300);
 BlinkLed(LedIndicator_CommHigh, 1, 300);

 RGB.control(true);

 Serial.begin(9600); //Use serial monitor to debug the code.
 //Read “Particle serial tutorial” for detailed how-to.
 Serial.println("Connecting Photon to IBM Watson IoT Platform ");

 while(!Serial.available()) {
 Particle.process();
 }

 client.connect(MQTT_CLIENT,MQTT_USERNAME,MQTT_PASSWORD);//Connect Photon to Watson IoT Platform

 if(client.isConnected()) { //Verify the connection
 Serial.println("Now connected!");
 client.subscribe(COMMAND_TOPIC); //subscribe commands with CommandType specified in line36
 }
}

void loop() {
 dummydata ++;
 if (dummydata > 100) dummydata = 0;

 //Convert data into a JSON formatted object by line86:
 //JSON format example: {“property”: value1, ”property2”: value2,…}
 sprintf(payload, "{ \"dataproperty\": \"%d\" }", dummydata);

 //Publish the JSON formatted payload to IBM cloud under the pre-defined Event Topic in line31
 client.publish(EVENT_TOPIC, const_cast<char*> (payload));

 BlinkLed(LedIndicator_Publish, 1, 200); //blink the publishing LED once when a data is sent

 client.loop();

 Serial.print("Data being sent to Cloud: "); //Display the sent data on SerialMonitor
 Serial.println(dummydata);

 delay(5000); //delay 5sec: Set the period of publishing data to cloud
}

void callback(char* topic, byte* payload, unsigned int length) {
 RGB.color(255,10,255); //blink the RGB LED in pink color
 delay(300);
 RGB.color(0,0,0);

 char p[length + 1];

 memcpy(p, payload, length); //read in received command message payload
 p[length] = NULL;

Copyright Reserved

3

NYCCT CET 4925 Internet of Things Instructor: Dr. Li

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

 String message(p);

 Serial.print("Received command from Cloud: "); //display received command on serial terminal
 Serial.println(p);

 //Line118: to parse received json object to obtain commands. If the commands are in string
 //format, no need of this.
 // String CmdStr = RdJson::getString("testcommand", "", p.c_str());
 // Serial.printlnf("Received Command from cloud: %s", CmdStr.c_str());

 //Line122-138: Take diff actions according to received commands. Make changes for your needs.
 if (!strcmp(p, "turnlow"))
 {
 BlinkLed(LedIndicator_CommLow, 1, 300);
 }
 else if (!strcmp(p, "turnmid"))
 {
 BlinkLed(LedIndicator_CommMid, 1, 300);
 }
 else if (!strcmp(p, "turnhigh"))
 {
 BlinkLed(LedIndicator_CommHigh, 1, 300);
 }
 else {
 RGB.color(255,255,255); delay(1000); RGB.color(0,0,0); //Blink the RGB LED in white
 BlinkLed(LedIndicator_CommLow, 1, 100);
 BlinkLed(LedIndicator_CommMid, 1, 100);
 BlinkLed(LedIndicator_CommHigh, 1, 100);
 }
}

void BlinkLed(int LedPin, int BlinkTimes, int BlinkPeriod) //A func to blink a LED for BlinkTimes
{
 for (int k=0; k<BlinkTimes; k++){
 digitalWrite(LedPin, HIGH);
 delay(BlinkPeriod);
 digitalWrite(LedPin, LOW);
 delay(BlinkPeriod);
 }
}

Note: Refer to Particle Serial Tutorial to learn how to use Serial Monitor with Particle for testing and
debugging.
Link: https://community.particle.io/t/serial-tutorial/26946
or: https://github.com/rickkas7/serial_tutorial

References
1. “MQTT connectivity for devices”, IBM Cloud Docs,
 https://console.bluemix.net/docs/services/IoT/devices/mqtt.html#mqtt
2. “Getting started with Watson IoT Platform using Node-RED”, IBM developerWorks Recipes,
https://developer.ibm.com/recipes/tutorials/getting-started-with-watson-iot-platform-using-node-red/
3. https://console.bluemix.net/docs/services/IoT/platform_authorization.html#connecting-applications
4. https://github.com/hirotakaster/MQTT

Copyright Reserved

https://github.com/hirotakaster/MQTT
https://console.bluemix.net/docs/services/IoT/platform_authorization.html#connecting-applications
https://developer.ibm.com/recipes/tutorials/getting-started-with-watson-iot-platform-using-node-red/
https://console.bluemix.net/docs/services/IoT/devices/mqtt.html#mqtt
https://github.com/rickkas7/serial_tutorial
https://community.particle.io/t/serial-tutorial/26946

